Imaging chiral symmetry breaking from Kekulé bond order in graphene

نویسندگان

  • Christopher Gutiérrez
  • Cheol-Joo Kim
  • Lola Brown
  • Theanne Schiros
  • Dennis Nordlund
  • Edward B. Lochocki
  • Kyle M. Shen
  • Jiwoong Park
  • Abhay N. Pasupathy
چکیده

Chirality—or ‘handedness’—is a symmetry property crucial to fields as diverse as biology, chemistry and high-energy physics. In graphene, chiral symmetry emerges naturally as a consequence of the carbon honeycomb lattice. This symmetry can be broken by interactions that couple electrons with opposite momenta in graphene. Here we directly visualize the formation of Kekulé bond order, one such phase of broken chiral symmetry, in an ultraflat graphene sheet grown epitaxially on a copper substrate. We show that its origin lies in the interactions between individual vacancies in the copper substrate that are mediated electronically by the graphene. We show that this interaction causes the bonds in graphene to distort, creating a phase with broken chiral symmetry. The Kekulé ordering is robust at ambient temperature and atmospheric conditions, indicating that intercalated atoms may be harnessed to drive graphene and other two-dimensional materials towards electronically desirable and exotic collective phases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Band gap opening by two-dimensional manifestation of peierls instability in graphene.

Using first-principles calculations of graphene having high-symmetry distortion or defects, we investigate band gap opening by chiral symmetry breaking, or intervalley mixing, in graphene and show an intuitive picture of understanding the gap opening in terms of local bonding and antibonding hybridizations. We identify that the gap opening by chiral symmetry breaking in honeycomb lattices is an...

متن کامل

Interplay between symmetry and spin-orbit coupling on graphene nanoribbons

We study the electronic structure of chiral and achiral graphene nanoribbons with symmetric edges, including curvature and spin-orbit effects. Curved ribbons show spin-split bands, whereas flat ribbons present spin-degenerate bands. We show that this effect is due to the breaking of spatial inversion symmetry in curved graphene nanoribbons, while flat ribbons with symmetric edges possess an inv...

متن کامل

THE FRANK KINETIC MODEL FOR SPONTANEOUS CHIRAL SYMMETRY BREAKING WITH VARIABLE CONCENTRATION OF THE ACHIRAL SUBSTRATE

This paper considers the possibility of spontaneous transition of aracemic mixture (composed of equal amounts of two enantiomeric species, say L and D) into a monochiral state (in which only one enantiomer, say L, is present). Transitions of this kind have been recently experimentally observed. A plausible approach to this phenomenon is a model put forward by Frank, based on simple laws of ...

متن کامل

Monte Carlo study of the semimetal-insulator phase transition in monolayer graphene with a realistic interelectron interaction potential.

We report on the results of the first-principles numerical study of spontaneous breaking of chiral (sublattice) symmetry in suspended monolayer graphene due to electrostatic interaction, which takes into account the screening of Coulomb potential by electrons on σ orbitals. In contrast to the results of previous numerical simulations with unscreened potential, we find that suspended graphene is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016